B. Tech III Year I Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA 19AME55d - POWER PLANT OPERATION AND CONTROL

(Open Elective-I)

L T P \mathbf{C} 3 0 0 3

Course Objectives: The objectives of the course are to make the students learn about

- Familiarize with various methods of power generation.
- Outline the working components of power plants.
- Expose the students measuring of various controllable and uncontrollable factors in power plants.
- Explain the concepts of boiler and turbine control.

UNIT I: OVERVIEW OF POWER GENERATION

12 Hours

Survey of methods of power generation: Hydro, thermal, nuclear, solar and wind power -Importance of instrumentation in power generation - Thermal power plant - Building blocks -Combined cycle systems - Combined heat and power system - sub critical and supercritical boilers.

Learning Outcomes:

At the end of this unit, the student will be able to

• List the various types of power plants.

L1

• Illustrate the importance of instrumentation in power generation.

L4

Compare subcritical and supercritical boilers.

L2

UNIT II: MEASUREMENTS IN POWER PLANTS

10 Hours

Measurement of feed water flow, air flow, steam flow and coal flow - Drum level measurement -Steam pressure and temperature measurement - Turbine speed and vibration measurement - Flue gas analyzer – Fuel composition analyzer

Learning Outcomes:

At the end of this unit, the student will be able to

Describe turbine speed and vibration measurements.

L2

• Determine the steam flow and coal flow in power plants.

L3

- L5
- Appraise the importance of flue gas and fuel composition analyzer in power plants. • Illustrate the various controllable and uncontrollable factors that can be measure in

power plants.

L2

UNIT III: BOILER CONTROL - I

8 Hours

Combustion of fuel and excess air - Firing rate demand - Steam temperature control - Control of deaerator- Drum level control - Single, two and three element control - Furnace draft control implosion – flue gas dew point control – Trimming of combustion air – Soot blowing.

Learning Outcomes:

At the end of this unit, the student will be able to

List the various boiler control methods.

L1

• Describe the steam temperature control and drum level control.

L₂

Demonstrate furnace draft control and drum level control.

L₂

Mechanical Engineering Department, JNTUA College of Engineering. PULIVENDULA - 516 390.

Page 1 of 2

UNIT IV: BOILER CONTROL - II

8 hours

Burners for liquid and solid fuels — Burner management — Furnace safety interlocks — Coal pulverizer control — Combustion control for liquid and solid fuel fired boilers — air/fuel ratio control — fluidized bed boiler — Cyclone furnace.

Learning Outcomes:

At the end of this unit, the student will be able to

	Identify the burners for liquid and solid fuels.	1.3
		U T.O
•	Describe the working principle of coal pulverizer control.	L2
•	Explain combustion control for liquid and solid fuel fired boiler.	L2

UNIT V: CONTROL OF TURBINE

8 Hours

Types of steam turbines – impulse and reaction turbines – compounding – Turbine governing system – Speed and Load control – Transient speed rise – Free governor mode operation – Automatic Load Frequency Control – Turbine oil system – Oil pressure drop relay – Oil cooling system – Turbine run up system.

Learning Outcomes:

At the end of this unit, the student will be able to

•	List the various types of steam turbines.	L1
•	Compare impulse and reaction turbines.	L2
•	Describe turbine governing system for speed and load control.	L2
•	Explain about oil cooling system in turbine.	L2

Text Books:

- 1. Sam Dukelow, Control of Boilers, Instrument Society of America, 1991.
- 2. Everett Woodruff, Herbert Lammers, Thomas Lammers, Steam Plant Operation,9th Edition McGraw Hill, 2012.
- 3. Rajput R.K. A Text book of Power plant Engineering. 5th Edition, Lakshmi Publications, 2013.

Reference Books:

- 1. Liptak B.G., Instrumentation in Process Industries, Chilton Book Company, 2005.
- 2. Jain R.K., Mechanical and Industrial Measurements, Khanna Publishers, New Delhi, 1999.
- 3. P.K.Nag, Powerplant Engineering, Tata McGraw-Hill Education, 3rd edition, 2007.
- 4. Tamilmani, Power plant instrumentation, Sams Publishers, 2011.
- 5. Krishnaswamy.K and Ponnibala.M., Power Plant Instrumentation, PHI Learning Pvt.Ltd., New Delhi, 2011.

Course Outcomes:

At the end of this Course the student will be able to

•	Outline sources of energy for various power plants.	L2
•	Explain boiler and turbine control.	L2
•	Describe working components of a steam power plant.	L2
•	Illustrate the working mechanism of Diesel and Gas turbine power plants.	L2
•	Summarize types of measuring parameters for controlling the power plant.	L2
•	Demonstrate the working principle of nuclear power plants.	L4

